Software-defined Infrastructure (SDI) gehören unumstritten zu den aktuell wichtigsten Trends in Rechenzentren und Cloud-Umgebungen. Anhand des Einsatzes von Skripten oder Source Code sorgt eine SDI für eine bessere Flexibilität auf Infrastrukturebene. Allerdings darf eine SDI lediglich nur als ein Mittel zum Zweck betrachtet werden. Schließlich führen ein hoher Automatisierungsgrad sowie intelligente Systeme basierend auf komplexen Algorithmen zu einer Artificial Intelligence defined Infrastructure (AI-defined Infrastructure – AiDI).
Eine SDI trennt die Software von der Hardware. Damit befindet sich die Kontrollinstanz nicht mehr innerhalb der Hardware-Komponenten, sondern oberhalb integriert in einem Software-Stack. Basierend auf Software und entsprechender Automatisierungslogik ist eine SDI so konzipiert, dass sie eine Infrastruktur weitestgehend ohne menschliche Interaktion aufbauen und kontrollieren kann.
Eine typische SDI-Umgebung, zum Beispiel eine Cloud-Infrastruktur, wird anhand der Entwicklung von Skripten oder Programmcode aufgebaut. Die Software beinhält hierzu alle notwendigen Befehle, um eine vollständige Infrastruktur-Umgebung, inklusive Applikationen und Services, zu konfigurieren. Eine SDI-basierte Infrastruktur arbeitet unabhängig von einer bestimmten Hardware-Umgebung. Somit kann eine Infrastruktur vollständig, unabhängig der eingesetzten Hardware-Komponenten, durch Software ausgetauscht werden. Nur ein Grund, warum SDIs die Basis heutiger Cloud-Infrastruktur-Umgebungen sind.
Jedoch sollte eines bedacht werden, eine SDI ist nicht intelligent. Sie basiert auf statischem Programmcode, in welchem Befehle fest kodiert sind, um bestimmte Aktionen automatisch vorzunehmen.
Eine Software-defined Infrastruktur ist ein wichtiges Konzept, um dynamische IT-Umgebungen aufzubauen und zu betreiben. Allerdings bewegt sich eine SDI in den Grenzen von statischem Programmcode bzw. den Kenntnissen des verantwortlichen Entwicklers beziehungsweise des Administrators, welche die Skripte oder den Programmcode für die Umgebung schreiben. Weiterhin ist eine SDI nur zu einem bestimmten Grad dynamisch, da diese nicht in der Lage ist, die eigene Umgebung zu verstehen bzw. von ihr zu lernen.
Eine Artificial Intelligence defined Infrastructure (AI-defined Infrastructure – AiDI) erweitert eine SDI mit notwendigen komplexen Algorithmen, Machine Learning und Artificial Intelligence – und macht eine SDI somit intelligent. Eine AiDI erlaubt es einer SDI, selbstlernende bzw. selbstheilende Infrastruktur-Umgebungen aufzubauen und zu betreiben. AI-defined Infrastructure Umgebungen sind somit in der Lage, ohne menschliche Interaktion,
Eine AI-defined Infrastructure kann nicht mit altbekannten Automationslösungen verglichen werden, die typischerweise mit vordefinierten Skripten und Runbooks arbeiten. Eine AI-defined Infrastructure nutzt das existierende Wissen eines Unternehmens und führt dieses automatisch und unabhängig aus. Wie jeder neugeborene Organismus muss eine AI-defined Infrastructure trainiert werden, um anschließend autonom zu agieren. Anhand des (selbst)-erlernten Wissens werden Störungen automatisch beseitigt und das ebenfalls proaktiv für nicht erwartete Ereignisse, indem passende Vorfälle aus der Vergangenheit autonom verknüpft werden. Demnach überwacht und analysiert eine AI-defined Infrastructure alle dazugehörigen Komponenten in Echtzeit, um ein Problem zu identifizieren und auf Basis des existierenden Wissens zu lösen. Je mehr Incidents gelöst werden, desto größer wird das Wissen der AI-defined Infrastructure. Bei dem Kern einer AI-defined Infrastructure handelt es sich somit um eine wissensbasierte Architektur, welche Incidents und Veränderungen erkennen kann und eigenständig Strategien entwickelt, um ein Problem zu lösen.
Weiterhin setzt eine AI-defined Infrastructure auf Communities, um
Im Großen und Ganzen handelt es sich bei einer AI-defined Infrastructure um ein intelligentes System, welches initial mit externen Wissen befüllt wird und anschließend in der Lage ist, eigenständig zu lernen und autonom Entscheidungen zu treffen, ohne auf menschliche Interaktionen angewiesen zu sein.
Eine AI-defined Infrastructure ist ein essentieller Teil des heutigen IT-Betriebs und bildet die Basis für das AI-enabled Enterprise. Zunächst ermöglicht sie es IT-Abteilungen, das Verhalten ihrer Infrastrukturen von einer semi-dynamischen hin zu einer Echtzeit IT-Umgebung zu verändern.
Diese autonome Art der Planung, des Aufbaus, Betriebs und der Wartung einer Infrastruktur befähigt IT-Abteilungen und Entwickler Ressourcen wie Server, Storage, Netzwerk, Datenbanken und andere Services höchsteffizient bereitzustellen, indem sie nicht nur das Wissen eines einzelnen Experten nutzen, sondern des gesamten IT-Betrieb Teams. Weiterhin wird der IT-Betrieb damit von einem reinen Konsumenten von Ressourcen zu einem Orchestrierter bzw. Manager eines vollständig automatisierten und intelligenten IT-Stacks – die wesentliche Grundlage eines Ende-zu-Ende AI-ready Enterprise.
Bau- und Fertigungsspezialist investiert in die S/4HANA-Migration und geht mit RISE WITH SAP in die…
Trends 2025: Rasante Entwicklungen bei Automatisierung, KI und in vielen anderen Bereichen lassen Unternehmen nicht…
DHL Supply Chain nutzt generative KI-Anwendungen für Datenbereinigung und präzisere Beantwortung von Angebotsanforderungen (RFQ).
Marke mtu will globale Serviceabläufe optimieren und strategische Ziele hinsichtlich Effizienz, Nachhaltigkeit und Wachstum unterstützen.
IT-Infrastruktur-Trends 2025: Open-Source-Projekte sowie aufwändige regulatorische und Pflichtaufgaben werden das Jahr prägen.
IT-Systeme werden vor Ort in einem hochsicheren IT-Safe betrieben, ohne auf bauliche Maßnahmen wie die…