Befehl nicht verstanden: Computer lernen hören
Computer haben klare Stärken. Sehen, Hören und Fühlen zählen bislang definitiv nicht dazu. Was das Gehirn scheinbar so mühelos bewältigt, stellt Computer vor unlösbare Aufgaben.
Forscher des Leipziger Max-Planck-Instituts für Kognitions- und Neurowissenschaften und des Wellcome Trust Centre for Neuroimaging in London haben nun ein mathematisches Modell entwickelt, mit dem die maschinelle Wahrnehmung und Verarbeitung von gesprochener Sprache deutlich verbessert werden könnte. Diese oder ähnliche Algorithmen, die Mechanismen des Gehirns imitieren, könnten Computer in Zukunft helfen, die Welt wahrzunehmen.
Wie schwer es Computern fällt, mit gesprochener Sprache umzugehen, haben wahrscheinlich viele Menschen schon einmal erlebt. Starke Nerven braucht zum Beispiel, wer mit einem der Sprachautomaten kommuniziert, die von vielen Telefonhotlines eingesetzt werden. Wird nur ein wenig zu schnell oder zu langsam gesprochen, ist die Aussprache undeutlich oder gibt es ein Störgeräusch im Hintergrund, scheitert der Automat in der Regel. Grund dafür ist das sehr störungsanfällige Verfahren, mit dem Computerprogramme bisher Sprache verarbeiten. Der Computer versucht dabei vor allem, charakteristische Merkmale in den Frequenzen der Stimme zu erkennen, um Worte zu identifizieren.
“Das Gehirn nutzt wahrscheinlich ein anderes Verfahren”, sagt Stefan Kiebel vom Leipziger Max Planck-Institut für Kognitions- und Neurowissenschaften. Der Forscher vermutet, dass dabei besonders die Analyse zeitlicher Abfolgen eine große Rolle spielt. “Viele Wahrnehmungsreize unserer Umwelt lassen sich als zeitliche Abfolgen beschreiben.”
So bestehen Musik und gesprochene Sprache aus hierarchisch aufeinander aufbauenden Abschnitten. Das Gehirn, so die Hypothese des Wissenschaftlers, unterteilt dabei die verschiedenen Signale von den kleinsten, schnell veränderlichen Elementen (etwa einzelnen Sprachlauten wie “u” oder “e”) bis hin zu den größeren, langsam veränderlichen Informationen (zum Beispiel das Gesprächsthema). Die Bedeutung der Informationen auf verschiedenen zeitlichen Ebenen sei für die Verarbeitung von Wahrnehmungsreizen wahrscheinlich sehr viel größer als bisher angenommen.