Neuer Schritt hin zum Quanten-Computer

Ein Team um Professor Rudolf Gross, Physiker an der Technischen Universität München (TUM), hat nun eine extrem starke Wechselwirkung zwischen Licht und Materie erzielt, die ein erster Schritt in diese Richtung sein könnte. Ihre Ergebnisse stellen sie in der aktuellen Online-Ausgabe des Magazins Nature Physics vor.

Die Wechselwirkung zwischen Licht und Materie ist einer der fundamentalsten Prozesse der Physik. Ob sich unser Auto im Sommer aufgrund der Absorption von Lichtquanten in einen Backofen verwandelt, ob Solarzellen aus Licht Strom gewinnen oder Leuchtdioden Strom in Licht umwandeln, überall begegnen wir Auswirkungen dieser Prozesse. Auch für die Entwicklung der Quanten-Computer ist das Verständnis der Wechselwirkungen zwischen einzelnen Lichtteilchen, Photonen, und Atomen entscheidend.


Künstlerische Darstellung der Wechselwirkung eines supraleitenden Quantenschaltkreises mit einem Mikrowellenphoton.
Grafik: Dr. A. Marx, TU München

Physiker der Technischen Universität München (TUM), des Walther-Meißner-Instituts für Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften (WMI) und der Universität Augsburg haben nun zusammen mit Partnern aus Spanien eine ultrastarke Wechselwirkung von Mikrowellen-Photonen mit den Atomen eines nanostrukturierten Schaltkreises realisiert. Die erreichte Wechselwirkung ist nach Angaben der TU München zehnmal stärker als die bisher für solche Systeme erzielten Werte.

Das einfachste System zur Untersuchung der Wechselwirkung zwischen Licht und Materie besteht aus einem so genannten Hohlraum-Resonator, in dem genau ein Lichtteilchen, ein Photon, und ein Atom eingesperrt sind (Cavity quantum electrodynamics, cavity QED). Die Experimente sind hierbei extrem aufwändig, da die Wechselwirkung sehr schwach ist.

Eine sehr viel stärkere Wechselwirkung lässt sich mit nanostrukturierten Schaltkreisen erzielen, in denen bei Temperaturen knapp über dem absoluten Nullpunkt Metalle wie Aluminium supraleitend werden (circuit QED). Richtig aufgebaut verhalten sich die vielen Milliarden Atome der nur wenige Nanometer dicken Leiterbahnen des Schaltkreises so wie ein einziges künstliches Atom und gehorchen den Gesetzen der Quantenmechanik. Im einfachsten Fall erhält man so ein System mit zwei Energiezuständen, ein so genanntes Quanten-Bit oder Qbit.

Page: 1 2

Silicon-Redaktion

Recent Posts

Studie: Rund ein Drittel der APIs sind ungeschützt

Angriffe auf APIs und Webanwendungen sind zwischen Januar 2023 und Juni 2024 von knapp 14…

2 Tagen ago

Universitätsmedizin Essen setzt für E-Mail-Sicherheit auf NoSpamProxy

Mit täglich über 45.000 eingehenden E-Mails ist die IT-Abteilung des Klinikums durch Anhänge und raffinierte…

2 Tagen ago

Bau-Spezialist Schöck: Migration von SAP ECC ERP auf S/4HANA

Bau- und Fertigungsspezialist investiert in die S/4HANA-Migration und geht mit RISE WITH SAP in die…

4 Tagen ago

Pure Storage: Cloud, KI und Energieeffizienz

Trends 2025: Rasante Entwicklungen bei Automatisierung, KI und in vielen anderen Bereichen lassen Unternehmen nicht…

5 Tagen ago

GenKI verbessert Datenmanagement und Angebotsgenauigkeit

DHL Supply Chain nutzt generative KI-Anwendungen für Datenbereinigung und präzisere Beantwortung von Angebotsanforderungen (RFQ).

6 Tagen ago

Rolls-Royce Power Systems nutzt industrielle KI aus der IFS Cloud​

Marke mtu will globale Serviceabläufe optimieren und strategische Ziele hinsichtlich Effizienz, Nachhaltigkeit und Wachstum unterstützen.

6 Tagen ago