Nachhaltigkeit von KI messen

Darauf weisen Forscher des Instituts für ökologische Wirtschaftsforschung (IÖW) hin. Gemeinsam mit der Nichtregierungsorganisation AlgorithmWatch und dem Distributed Artificial Intelligence Labor der Technischen Universität Berlin haben sie mit Förderung des Bundesumweltministeriums im Leuchtturmprojekt „SustAIn“ drei Jahre lang untersucht, wie KI-Anwendungen nachhaltiger werden können. In ihren Empfehlungen fordern sie dazu auf, dass Nachhaltigkeitswirkungen von KI entlang des Lebenszyklus stärker gemessen und die Entwicklung und Nutzung von KI-Systemen reguliert werden müssen.

Emissionen über den gesamten Lebenszyklus vergleichen

In ihrem Report „Taking (policy) action to enhance the sustainability of AI systems“ zeigen die Forscher, wie der Energieverbrauch während der Entwicklungs- sowie in der Trainingsphase gemessen werden kann. „Insbesondere die Anbieter von großen Sprachmodellen, sogenannten LLMs, geben oft nur den direkten Energieverbrauch und die Emissionen für einen Trainingszyklus an“, erklärt KI-Expertin Friederike Rohde vom IÖW. „So bleibt das Bild unvollständig. Berücksichtigt man zusätzlich die Hardwareproduktion und die Betriebsenergie, kann sich der Emissionswert schnell verdoppeln. Zudem entstehen kontinuierliche Emissionen während der Anwendung des Modells. Indikatoren deuten darauf hin, dass diese immens sein könnten.“

Die KI-Verordnung der EU führe zwar erstmals Umweltaspekte auf, aber diese reichten nicht aus, so die Experten. „Wir freuen uns, dass der AI Act erste Schritte geht, um die Umweltrisiken von Künstlicher Intelligenz nachvollziehbar zu machen. Den Energie- und Ressourcenverbrauch von KI zu messen ist möglich und dringend nötig, das haben wir in unserem Projekt gezeigt“, so Kilian Vieth-Ditlmann von AlgorithmWatch. „Doch es braucht weitere Ansätze, um die Umweltwirkungen zu regulieren. Es sollten etwa Mess- und Reportingstandards auch für die Phase der KI-Nutzung entwickelt werden, etwa indem KI-Anbieter vor der Markteinführung verschiedene Standard-Nutzungsszenarien definieren.“

Transparenz über Energieverbräuche herstellen

Die Forschenden zeigen in ihrer Untersuchung, welche Daten im Hinblick auf den Energieverbrauch während der Systementwicklung und des Modelltrainings erfasst werden sollten. Helfen könnten dabei Metriken wie die Effektivität der Energienutzung („Power Usage Effectiveness“), die transparent machen, wie viel Energie ein Rechenzentrum im Verhältnis zu seinem Gesamtenergieverbrauch für die Datenverarbeitung verwendet. Mit diesem Parameter lässt sich die Energieeffizienz von Rechenzentren vergleichen.

Auch eine Fallstudie zu KI in der personalisierten Online-Werbung zeigte, wie relevant es ist, Energie- und Ressourcenverbräuche zu monitoren. „Entweder werden Energieverbräuche noch gar nicht gemessen oder die Daten liegen bei den großen IT-Unternehmen wie Google, Facebook oder Amazon, die diese nicht transparent machen”, erklärt Gesa Marken vom IÖW. „Wir fordern, dass rechtliche Verpflichtungen zur Messung und Veröffentlichung solcher Daten eingeführt werden.“

Wirtschaftliche und soziale Auswirkungen von KI beachten

Die Forschenden weisen darauf hin, dass die starke Marktkonzentration der KI-Industrie zu globalen Verteilungsungerechtigkeiten führt. Daher sollten auch die aus wirtschaftlicher und sozialer Sicht problematischen Tendenzen in der KI-Entwicklung berücksichtigt werden. „Um die Probleme der Marktkonzentration anzugehen, hat die Europäische Union im Bereich der Tech-Industrie die großen Online-Plattformen mit dem Digital-Markets-Act (DMA) reguliert. Dies könnte ein Muster dafür sein, wie die Marktkonzentration in der KI-Branche verringert werden könnte“, so Digitalexpertin Josephin Wagner vom IÖW. „Weitere politische Initiativen sollten nun nachlegen, um eine nachhaltige Entwicklung und Nutzung von KI-Systemen zu gewährleisten. Wir empfehlen Vorgaben zur Data Governance, eine Gesetzgebung für die Lieferkette und eine starke Ökodesign-Verordnung.“

Read also : KI als Waffe
Roger Homrich

Recent Posts

KI als Waffe

Politik, Wirtschaft und Privatpersonen müssen gemeinsam handeln, um Schutzmechanismen zu entwickeln – ohne das innovative…

14 Stunden ago

Cybersecurity Workforce Research Report: Cybersecurity wird zum Teamsport

Geringere Nachfrage nach Cybersicherheitsfachleuten und Fokussierung auf technische als auch organisatorische Fähigkeiten liegen angesichts der…

14 Stunden ago

Cybersicherheit in der Supply Chain: Vertrauen ist gut, Kontrolle ist Pflicht

Die Abhängigkeit von Drittanbietern erhöht das Risiko erheblich, denn jede Station in der Lieferkette kann…

15 Stunden ago

KI in jeder siebten Arztpraxis

Laut einer Studie von Bitkom und Hartmannbund haben 15 Prozent der hiesigen Praxen mindestens eine…

1 Tag ago

Digitales Ökosystem soll Rohstoffverbrauch senken

Fraunhofer-Forschende wollen die Wertschöpfungskette von Rohstoffen transparenter machen. Ziel ist eine bessere Kreislaufwirtschaft.

1 Tag ago

Öffentliche Hand forciert Cloud-Transformation

Lünendonk-Studie: 54 Prozent der befragten Verwaltungen wollen den Cloud-Anteil ihrer Anwendungen bis 2028 auf 40…

3 Tagen ago