KI könnte Diagnose von Lupusnephritis automatisieren

Eine der schwerwiegendsten Erscheinungsformen ist die Nierenbeteiligung, die als Lupusnephritis (LN) bezeichnet wird. Obwohl die LN durch Blut- oder Urintests nachgewiesen werden kann, gilt eine Nierenbiopsie als der präziseste diagnostische Ansatz. Die Interpretation von Biopsieberichten ist jedoch aufgrund von Diskrepanzen zwischen den Interpretationen der Pathologen schwierig. Laut dem Daten- und Analyseunternehmen GlobalData wird in den USA daran geforscht, KI für die Diagnose von LN zu nutzen, und es besteht die Möglichkeit, die Erkennung der Krankheit zu automatisieren.

Computer-Vision-Pipeline zur Klassifizierung von LN

Am Cullen College of Engineering der University of Houston (UH) entwickeln Wissenschaftler ein KI-Programm zur Unterstützung der Diagnose von LN. Sie trainieren ein “neuronales Netzwerk” , um LN-Biopsie-Objektträger zu lesen und zu klassifizieren. Konkret beabsichtigt das Forschungsteam, eine spezielle Computer-Vision-Pipeline zur Klassifizierung von LN durch die Analyse von histopathologischen Bildgebungsdaten mithilfe von maschinellem Lernen (ML) zu entwickeln. In enger Zusammenarbeit mit Nierenpathologen, darunter Experten aus verschiedenen Einrichtungen weltweit, will das UH-Team ein computergestütztes Diagnosesystem für LN entwickeln, das klinische Entscheidungshilfen ähnlich wie Nierenpathologen bietet.

Die Anwendung von KI im Bereich der LN wurde in der Vergangenheit auch erforscht, um das Ansprechen auf die Behandlung der Krankheit zu bewerten. Im Jahr 2021 stellte ein Forscherteam der Medical University of South Carolina (MUSC) einen bahnbrechenden ML-Algorithmus vor, der auf die Vorhersage des Behandlungserfolgs bei Menschen mit LN zugeschnitten ist. Dieses innovative Modell berücksichtigte sieben wichtige Krankheitsindikatoren, um die Wahrscheinlichkeit des Ansprechens eines Patienten auf die Therapie innerhalb eines Jahres vorherzusagen, und zeigte vielversprechende Ergebnisse.

ML im Gesundheitswesen steckt noch in den Kinderschuhen

Sravani Meka, Senior Immunology Analyst bei GlobalData, schränkt aber ein: “Da sich das KI-Programm noch in einem frühen Entwicklungsstadium befindet, kann es noch nicht auf die gesamte SLE-Population angewendet werden. Da ML nicht nur im Gesundheitswesen, sondern auch in anderen Branchen noch in den Kinderschuhen steckt, bleibt abzuwarten, wann und wie KI-Programme wie dieses in größerem Umfang eingesetzt werden, um präzise Diagnosen zu stellen, klinische Prozesse zu rationalisieren, Kosten im Gesundheitswesen und die Belastung von Fachärzten zu reduzieren und letztlich Leben zu retten.”

Roger Homrich

Recent Posts

Banken und Versicherer sind KI-Großabnehmer

Ein Großteil der weltweiten KI-Gelder fließt in den Finanzsektor. 2023 wurden in der Branche 87…

6 Stunden ago

Siemens legt 10 Milliarden Dollar für Software-Spezialisten auf den Tisch

Die Übernahme des US-amerikanischen Anbieters Altair Engineering soll die Position im Markt für Computational Science…

7 Stunden ago

Standortübergreifender KI-Einsatz im OP-Saal

Ein deutsch-französisches Projekt hat hybride Operationssäle entwickelt, die durch 5G-Netz und KI neue Anwendungen ermöglichen.

8 Stunden ago

OT-Security braucht zunächst Asset-Transparenz

Unternehmen wissen oft nicht, welche Geräte in der Produktion eine IP-Adresse haben, warnt Peter Machat…

3 Tagen ago

Künstliche Intelligenz erreicht die Cloud

KPMG-Studie: 97 Prozent der Cloud-nutzenden Unternehmen verwenden KI-Dienste von Cloud-Anbietern.

4 Tagen ago

AI Act: Durchblick im Regulierungsdickicht

Bitkom veröffentlicht Online-Tool und Leitfaden zum KI-Einsatz in Unternehmen. Beide Angebote sind kostenlos.

4 Tagen ago