Fast drei Viertel der Unternehmen haben laut Accenture KI zu ihrer obersten digitalen Investitionspriorität für 2024 gemacht. Aber laut einer AWS-Umfrage unter Chief Data Officers hat nur jedes fünfte Unternehmen ihre KI-Experimente mit Anwendungsfällen weiterentwickelt und nur 6 Prozent tatsächlich im Betrieb umgesetzt. Mit anderen Worten: Während die Akzeptanzrate hoch ist, hinkt die Ausführungsrate von Gen-AI-Initiativen deutlich hinterher.
Viele Unternehmen haben ihre Daten noch nicht für KI vorzubereitet. Das Hochladen ihrer Daten in öffentlich zugängliche Modelle wie ChatGPT birgt Risiken; und nur wenige Unternehmen verfügen über interne Data-Science-Ressourcen, um ihre eigenen Gen-AI-Modelle zu erstellen. Was können Unternehmen also tun, um ihren ROI mit KI zu steigern?
Eine umfassende Datenstrategie ist für die Nutzung von KI allerdings entscheidend. Trotzdem leisten nur wenige Unternehmen die erforderliche Vorarbeit, um ihre Daten für die Einbindung in LLMs vorzubereiten. Zu den grundlegenden Schritten gehören:
Im Idealfall nutzen Unternehmen proprietäre Daten dazu, um ein großes Sprachmodell (LLM) wie Llama, OpenLM oder Mistral zu verfeinern. So können sie damit Aufgaben ausführen, die speziell auf ihre Bedürfnisse zugeschnitten sind, etwa Kreditanträge bewerten oder Unterbrechungen der Lieferkette vorhersagen.
Unternehmen können auch ein proprietäres LLM mit seinen eigenen domänenspezifischen Daten erstellen und trainieren. Dieser Prozess ist allerdings teuer, kann Jahre dauern und erfordert interne Datenwissenschaftler. Die Partnerschaft mit einem großen LLM-Anbieter ist eine weitere Option, um dasselbe zu erreichen. In beiden Fällen sind die meisten Unternehmen dazu nicht annähernd in der Lage, da ihre eigenen Daten nicht für anspruchsvolle KI-Anwendungen bereit sind.
Unternehmen, die beim Einsatz von generativer KI zögern, sollten ihr Handeln überdenken. Schließlich werden Führungskräfte, die sich der KI mit einer experimentierfreudigen und innovativen Haltung nähern, langfristig am meisten Erfolg haben. Skeptische Anwender von Gen-AI-Tools haben häufig Angst, durch die Technologie ersetzt zu werden. Die Möglichkeiten der KI sind jedoch kein Ersatz, sondern vielmehr eine Hilfe für Teams. Dadurch wird KI immer mehr zu einem unverzichtbaren Werkzeug für international operierende Unternehmen. Wichtig ist allerdings, das richtige Maß und die passenden Tools für die jeweiligen Aufgaben zu finden.
Ferroelektrisches Oxid verringert den Energieverbrauch erheblich und verkürzt Latenzzeiten von Computerarchitekturen.
Hyperscaler ermöglichen ISVs eine schnellere Markteinführung ihrer Produkte, wobei damit die verbundenen Herausforderungen steigen, sagt…
Warenhauskette setzt auf die KI-gesteuerten Fähigkeiten zur Bedarfsplanung und Nachversorgung von Blue Yonder.
Technische Hochschule Augsburg (THA) will Hersteller auf die neue EU-Verordnung hinweisen, die Cybersicherheit für vernetzte…
Mit der steigenden Anzahl von Endpunkten, wächst die Komplexität, die mit dem Unternehmensnetzwerken verbundenen Geräte…
Die Kombination aus Blockieren und fundierter Analyse bietet eine resiliente Sicherheitsarchitektur, sagt Andrea Napoli von…