Mit einer Trillion Rechenoperationen pro Sekunde wäre ein solcher Exaflop/s-Computer rund tausendmal schneller als heutige Superrechner. Schon 2014/2015 erwarten die Forscher einen ersten Vorläufer mit der Leistung von 100 Petaflop/s, rund hundertmal schneller als heutige Petaflop/s-Rechner wie der Jülicher Rechner ‘Jugene’.
Mit der Exaflop/s-Klasse können Wissenschaftler Herausforderungen angehen, die heute noch utopisch wirken – wie die detaillierte Simulation des menschlichen Gehirns. Solche Leistungssteigerungen lassen sich allerdings nur durch paralleles Rechnen mit Millionen von Prozessoren erzielen. Mit heutiger Technik stiegen die Energiekosten dadurch ins Unbezahlbare. Um einen wirtschaftlichen Exascale-Rechner zu ermöglichen, werden die Forscher in dem mit 8 Millionen Euro von der Europäischen Kommission geförderten DEEP-Projekt die Vernetzung verschiedener Hardware-Komponenten optimieren und neue energiesparende Kühlsysteme integrieren.
Jülicher Forscher haben für DEEP eine neuartige ‘Cluster Booster Architektur’ konzipiert. Ein wichtiges Element sind noch in der Entwicklung befindliche, speziell für das Parallelrechnen ausgelegte Prozessoren – die Intel Many Integrated Core Architecture (MIC) – mit 50 und mehr Rechenkernen auf einem Chip. Je 512 solcher MIC-Prozessoren werden durch ein von der Uni Heidelberg entwickeltes Hochgeschwindigkeitsnetzwerk – genannt Extoll – vielfach zu einem Booster vernetzt, der das Gesamtsystem beschleunigt. “Die enge Kooperation mit Intel hilft uns, die Entwicklung von Exascale-fähigen Cluster-Architekturen zu beschleunigen, und die Herausforderung anzugehen, Hardware und Software für Systeme dieser Leistungsklasse zu bauen, zu programmieren und zu betreiben”, sagt Prof. Thomas Lippert, Leiter des Jülich Supercomputing Centre.
Der neue Ansatz berücksichtigt, dass großangelegte künftige Simulationen aus mehreren, verschieden Aufgabenteilen bestehen werden – mit komplizierten Kommunikationsmustern zwischen den Prozessoren. Die Idee: Die komplexen Bestandteile eines Programms werden auf dem Herzstück des Parallelrechners ausgeführt, einem Cluster mit Intel Xeon Server-Prozessoren. Einfache, hochparallele Programmteile, die nicht auf solche CPUs angewiesen sind, werden dagegen an die Booster-Module abgegeben, die mit ihrer großen Anzahl an einfachen strukturierten Rechenkernen derartige Aufgaben deutlich energieeffizienter berechnen können.
“Ich freue mich, mit dem Cluster Operating System ParaStation einen Beitrag zum Gelingen dieses visionären Projekts leisten zu können”, sagt Hugo R. Falter, Chief Operating Officer von ParTec. Aufbauend auf einer erweiterten Version des Cluster-Betriebssystems werde mit DEEP eine komplette Software-Umgebung für die neue Hardware-Architektur geschaffen. Neben Werkzeugen für Anwendungsentwickler wird im Rahmen des Projekts auch Software für die Hirnforschung, Klimawissenschaften, Erdbebenforschung, Hochtemperatursupraleitung und das Computational Fluid Engineering auf die Plattform übertragen.
Bau- und Fertigungsspezialist investiert in die S/4HANA-Migration und geht mit RISE WITH SAP in die…
Trends 2025: Rasante Entwicklungen bei Automatisierung, KI und in vielen anderen Bereichen lassen Unternehmen nicht…
DHL Supply Chain nutzt generative KI-Anwendungen für Datenbereinigung und präzisere Beantwortung von Angebotsanforderungen (RFQ).
Marke mtu will globale Serviceabläufe optimieren und strategische Ziele hinsichtlich Effizienz, Nachhaltigkeit und Wachstum unterstützen.
IT-Infrastruktur-Trends 2025: Open-Source-Projekte sowie aufwändige regulatorische und Pflichtaufgaben werden das Jahr prägen.
IT-Systeme werden vor Ort in einem hochsicheren IT-Safe betrieben, ohne auf bauliche Maßnahmen wie die…